Задать вопрос
26 мая, 09:41

Два печника начали работу вместе, но первый печник, проработав 6 часов. заболел и ушёл, а второй окончил оставшуюся часть работы за 18 часов. за сколько часов всю работу мог выполнить каждый печник, если, работая вместе, они могут сложить печь за 12 часов.

+2
Ответы (1)
  1. 26 мая, 10:27
    0
    Пусть 1 печник=x часов, 2 печник=y часов. Производительность 1 печника=1/x; а 2-ого печника 1/y, а общая производительность 1/12.

    Получим уравнение: 1/x + 1/y = 1/12

    1 печник за 6 часов сделал 6/x, а 2 печник сделал 24/y.

    Получим уравнение: 6/x + 24/y = 1

    Решим систему:

    1/x+1/y=1/12| * (-6) - 6/x-6/y=-1/2 18/y=1/2 y=36 y=36 y=36

    6/x+24/y=1 6/x+24/y=1 6/x+24/y=1 6/x+2/3=1 6/x=1-2/3 x=18
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Два печника начали работу вместе, но первый печник, проработав 6 часов. заболел и ушёл, а второй окончил оставшуюся часть работы за 18 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Два печника, работая вместе, могут сложить печь за 12 ч. Если первый печник будет работать 2 ч, а второй 3 ч, то они выполнят только 20% всей работы. За сколько часов может сложить печь каждый печник, работая отдельно?
Ответы (1)
Два печника могут сложить печь за 12 часов. Если первый печник будет работать 2 часа, а второй 3 часа. то они выполнят только 20% всей работы. За сколько часов может сложить печь каждый печник, работая отдельно?
Ответы (1)
Два печника могут сложить печь за 10 час. За какое время модет сложить эту печь второй печник если первый может сделать это на 15 час быстрее, чем второй?
Ответы (1)
Два каменщика, работая вместе, могут выполнить работу за 4.8 дня. Второй каменщик, работая отдельно, мог бы выполнить эту работу на 4 быстрее, чем первый. За сколько дней каждый каменщик, работая отдельно, мог бы выполнить эту работу?
Ответы (1)
Два мастера, работая вместе, могут выполнить работу за 6 дней. За сколько дней может выполнить эту работу каждый мастер, работая отдельно, если первый мастер может выполнить всю работу на 9 дней быстрее, чем второй?
Ответы (1)