Задать вопрос
8 июля, 11:40

Помогите решить.

1) sinx * sin2x * cos3x * sinx * cos2x * sin3x=0

2) sin^2x + 2sinx * cosx=1

3) 4sin^4x - 5sinx^2x + 1=0

+1
Ответы (1)
  1. 8 июля, 14:43
    0
    Sin^2x-2sinx*cosx-3cos^2x=0 (: cos^2x)

    ОДЗ: x э R

    tg^2x-2tgx-3=0

    tgx=t

    t^2-2t-3=0

    D=16>0 (2 рдк)

    t1=3 t2 = - 1

    tgx=3 или tgx = - 1

    х=arctg3+Пn; n э Z x = - П/4+Пn; n э Z
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите решить. 1) sinx * sin2x * cos3x * sinx * cos2x * sin3x=0 2) sin^2x + 2sinx * cosx=1 3) 4sin^4x - 5sinx^2x + 1=0 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы