Задать вопрос
9 июня, 17:32

определить сумму бесконечно убывающей геометрической прогрессии, если известно, что сумма ее первого и четвертого членов равна 54, а сумма второго и третьего равна 36.

+3
Ответы (1)
  1. 9 июня, 17:53
    +1
    b1+b4 = b1+b1*q^3 = b1 (1+q^3) = b1 (1+q) (1-q+q^2) = 54

    b2+b3 = b1*q + b1*q^2=b1q (1+q) = 36

    разделим первое на 2 е

    (1-q+q^2) / q = 54/36

    q^2 - q + 1 = 1,5q

    q^2 - 2,5q + 1 = 0

    По теореме Виета

    q1=2

    q2=0,5

    Для бесконечно убывающей прогрессии |q|<1

    b1 = 36/q (1+q) = 36/0,5*1,5 = 48

    S = b1 / (1-q) = 48/0,5 = 96
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «определить сумму бесконечно убывающей геометрической прогрессии, если известно, что сумма ее первого и четвертого членов равна 54, а сумма ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
1) Найдите сумму членов бесконечной геометрической прогрессии 8,4, ... 2) Найдите десятый член арифметической прогрессии: 3; 7; ... 3) Найдите сумму бесконечно убывающей геометрической прогрессии 9; -3; 1; ...
Ответы (1)
Помогите ребятушки! В геометрической прогрессии сумма первого, второго и третьего равна 42, а сумма второго, третьего и четвертого равна 21. Найти сумму этих четырёх членов геометрической прогрессии.
Ответы (1)
1. Найти сумму первых семи членов арифметической прогрессии, произведение третьего и пятого членов которой равно второму члену, а сумма первого и восьмого членов равна 2. 2. В геометрической прогрессии b5+b2-b4=66; b6+b3-b5=-132. Найти b15 3.
Ответы (1)