Задать вопрос
28 мая, 07:55

Найти наибольшее значение функции f (x) = - x^3+3x^2+9x-29 на отрезке [-1; 4]

+1
Ответы (1)
  1. 28 мая, 10:56
    0
    f' (x) = - 3x^2+6x+9

    f" (x) = - 6x+6

    f''=0 при х=0

    следовательно f (0) = - 29 - наибольшее значение (0 подставили в исходную функцию)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти наибольшее значение функции f (x) = - x^3+3x^2+9x-29 на отрезке [-1; 4] ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
найти точку минимума y = (18-x) e^18-x Найти наименьшее значение функции на отрезке [-2.5; 0] y=4 х - lп (х + 3) ^4 наиб. значение функции на отрезке [-7.5; 0] y=ln (x+8) ^3-3x наим. значение функции на отрезке [-2,5; 0] y=3x-3ln (x+3) + 5
Ответы (1)
Постройте график функции у=-1/3 х+2. Найдите: А). Наименьшее и наибольшее значение функции на отрезке [-3; 0]; Б). Координаты точки пересечения графика функции с осью Ох. Постройте график функции у=1/3 х-2. Найдите: А).
Ответы (1)
1) Найти наибольшее значение функции F (x) = 1+8x-x^2 на промежутке [2; 5] 2) найти промежутки возрастания и убывания функции, точки экстремума функции, а так же наибольшее и наименьшее значение функции y=2x^3-3x^2-12x+1 на отрезке [4; 5]
Ответы (1)
Постройте график функции y=-x². С помощью графика найдите a) значение функции при значение аргумента равном - 3; 0:1; б) значение аргумента, если значение функции равно - 16; -4; 0; в) наибольшее и наименьшее значение функции на отрезке [-3;
Ответы (1)
Пусть A наибольшее значение функции y=x² на отрезке (-2; 1), а B - наибольшее значение функции y=x² на отрезке (-1; 2), найдите A-B
Ответы (1)