Задать вопрос
28 апреля, 15:48

Найдите сумму первых n членов геометрической прогрессии если b7=16/9; q=2/3; n=7?

+3
Ответы (1)
  1. 28 апреля, 18:30
    0
    Седьмой член геометрической прогрессии находится по формуле

    b₇=b₁*qⁿ⁻¹ ⇒ b₁=b₇/qⁿ⁻¹ = (16/9) : (2/3) ⁶ = (16/9) * (729/64) = 81/4

    S = (81/4) ((2/3) ⁷-1) : (2/3-1) = 57 (7/36)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите сумму первых n членов геометрической прогрессии если b7=16/9; q=2/3; n=7? ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
1. Сумма первых восьми членов геометрической прогрессии S8=85/64, а знаменатель q=-1/2. Найдите b1. 2. Сумма n первых членов геометрической прогрессии Sn=25 целых 34/81, ее первый член b1=9 и n-ый член bn=64/81. найдите число n. 3.
Ответы (1)
1) Найдите сумму первых 25 членов арифметической прогрессии - 2; 1; 2 ... 2) Найдите сумму первых 6 членов геометрической прогрессии 32:27: 16:9; ... 3) Найдите сумму бесконечной геометрической прогрессии 6:4; ...
Ответы (1)
1. найдите сумму первых шести членов геометрической прогрессии, в которой первый член 8 и q = 1/2 (ответ в книжке 15 целых 3/4) 2. сумма первых четрыех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2.
Ответы (1)
1) Найдите четырнадцатый член и сумму двадцати первых членов арифметической прогрессии если а1 = 2 и а2 = 5 2) найти пятый член и сумму четырех первых членов геометрической прогрессии если b1 = 27 и q =
Ответы (1)