Задать вопрос
22 октября, 09:15

log^2 (2; 16+6x-x^2) + 10*log (0.5; 16+6x-x^2) + 24>0

+4
Ответы (1)
  1. 22 октября, 13:05
    -1
    ОДЗ

    x²-6x-16<0

    x1+x2=6 U x1*x2=-16⇒x1=-2 U x2=8

    -2
    log² (2) (16+6x-x²) - 10log (2) (16+6x-x²) + 24>0

    log (2) (16+6x-x²) = a

    a²-10a+24>0

    a1+a2=10 U a1*a2=24⇒a1=4 U a2=6

    a<4

    log (2) (16+6x-x²) <4

    16+6x-x²<16

    6x-x²<0

    x (6-x) <0

    x=0 U x=6

    x∈ (-2; 0) U (6; 8)

    a>6⇒log (2) (16+6x-x²) >6

    16+6x-x²>64

    x²-6x+48<0

    D=36-172=-136<0 нет решения
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «log^2 (2; 16+6x-x^2) + 10*log (0.5; 16+6x-x^2) + 24>0 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы