Задать вопрос
25 ноября, 05:50

Найти производную y'=? y = (e^ (3x+1)) * cos^2*5x

+2
Ответы (1)
  1. 25 ноября, 08:42
    0
    Свойства производной:

    1) y' = (ab) ' = b*a' + a*b'

    2) (y (f (x))) ' = y' (f (x)) * f ' (x)

    a = e^ (3x+1)

    b = cos^2 (5x)

    y' = 3e^ (3x+1) * cos^2 (5x) + 2cos (5x) * (-sin (5x)) * 5*e^ (3x+1) = 3e^ (3x+1) * cos^2 (5x) - 10cos (5x) * sin (5x) * e^ (3x+1) = e^ (3x+1) * cos^2 (5x) * (3 - 10sin (5x))
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти производную y'=? y = (e^ (3x+1)) * cos^2*5x ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре