Задать вопрос
9 октября, 10:11

В футбольном турнире, проходящем в один круг (каждая команда должна сыграть с каждой ровно по одному разу), играют N команд. В некоторый момент турнира тренер команды A заметил, что любые две команды, отличные от A, сыграли разное количество игр. Также известно, что к этому моменту команда A сыграла 12 игр. Какое количество N команд могло участвовать в этом турнире? В ответ запишите сумму всех возможных значений N.

+5
Ответы (1)
  1. 9 октября, 12:54
    0
    Число игр, в которых участвовала команда, в любой момент находится в пределах от 0 до N-1. При этом не может так оказаться, что одна команда сыграла 0 матчей, а какая-то сыграла все N-1. Значит, всегда есть повторения, что является сюжетом известной задачи.

    Рассмотрим N-1 команду кроме A. Число игр изменяется в тех же пределах, и значения 0 и N-1 по-прежнему несовместимы. Если все значения разные, то это или от 0 до N-2 включительно, либо от 1 до N-1.

    В первом случае есть команда, которая ни с кем не играла. Если её исключить из рассмотрения, то кроме A останется N-2 команды со значениями от 1 до N-2. Тогда последняя из них играла со всеми, включая A. Если и эту команду исключить из рассмотрения, то помимо A останется N-3 команды со значениями от 0 до N-4, и с ними A играла 12 раз. Далее через два шага мы получим N-5 команд со значениями от 0 до N-6, с которыми A играла 11 раз, и так далее.

    Получается, что при значениях игр команд от 0 до N-2k, команда A с ними провела 14-k встреч. Так мы дойдём до k=13, и окажется, что A играла одну встречу с N-25 командами, у которых значения лежат в пределах от 0 до N-26 включительно. Отсюда следует, что N=27 или N=28. Сами эти значения подходят, так как данная процедура может быть проделана в обратном порядке с получением расписания. При N>28 следующий шаг даёт противоречие: если команда A не играла ни с кем из оставшихся, то там не могло получиться попарно различных значений, если остались по крайней мере двое.

    Во втором случае, при значениях от 1 до N-1, есть команда, игравшая со всеми. Тогда её, как и выше, исключаем. Получается, что A провела 12 встреч с командами, у которых количество игр принимает значения от 0 до N-3 (значение N-1 исчезло, а остальные уменьшились на 1). Видно, что при уменьшении на единицу числа игр A, правая граница значений для остальных команд уменьшается на 2. Значит, при уменьшении числа игр A ещё на 11 (оно станет равным 1), получатся границы от 0 до N-25, откуда следует, что N=26 или N=27, причём эти значения подходят.

    Таким образом, в турнире могло участвовать 26, 27 или 28 команд; сумма этих значений равна 81
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В футбольном турнире, проходящем в один круг (каждая команда должна сыграть с каждой ровно по одному разу), играют N команд. В некоторый ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
В футбольном турнире, проходящем в один круг (каждая команда должна сыграть с каждой ровно по одному разу), играют 26 команд. В некоторый момент турнира тренер команды A заметил, что любые две команды, отличные от A, сыграли разное количество игр.
Ответы (1)
В футбольном турнире, проходящем в один круг (каждая команда должна сыграть с каждой ровно по одному разу), играют 28 команд. В некоторый момент турнира тренер команды A заметил, что любые две команды, отличные от A, сыграли разное количество игр.
Ответы (1)
В однокруговом футбольном турнире (каждая команда с каждой сыграла ровно по одному матчу) участвовало 7 команд. По итогам турнира оказалось, что команды, занявшие призовые места, набрали ровно половину всех очков.
Ответы (1)
В турнире по футболу каждая команда сыграла с каждой по одному разу (за победу даётся з очка, за ничью 1, за поражение 0). Четверть команд набрали не более, чем по 2 очка. Какое максимальное кол-во команд могло участвовать в турнире?
Ответы (1)
По итогам волейбольного турнира, проведенного в один круг (т. е. каждая команда сыграла с каждой одну игру), оказалось, что первые три команды выиграли у каждой из остальных команд, а сумма очков, набранных первыми тремя командами, на 19 меньше, чем
Ответы (2)