Задать вопрос
28 августа, 05:30

При каких натуральных значениях n число n^2-25 делится на 13n+11

+2
Ответы (1)
  1. 28 августа, 07:45
    0
    Допустим, что нашлось хорошее число n = a1 ... ak 8, где a1, ..., ak - цифры, причём ak ≠ 9. Тогда n + 1 = a1 ... ak 9, n + 3 = a1 ... a k-1 bk 1, где bk = ak + 1. Числа n + 1 и

    n + 3 нечётны, а суммы их цифр равны a1 + a2 + ... + ak + 9 и a1 + a2 + ... + ak + 2 соответственно. Эти суммы отличаются на 7, и потому одна из них чётна. Но чётное число не может быть делителем нечётного. Противоречие.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «При каких натуральных значениях n число n^2-25 делится на 13n+11 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
10. Докажи или опровергни утверждения: 1) Если число делится на 10, то оно делится на 5. 2) Если число делится на 5, то оно делится на 10. 3) Если число делится на 10, то оно делится на 2. 4) Если число делится на 2, то оно делится на 10.
Ответы (1)
Определите какие из следующих утверждений верны если число делится на 4 то оно делится на 2 если число делится на 2 то оно делится на 4 если число делится на 10 то оно делится на 2 и на 5 если число делится на 2 и на 5 то оно делится на 10 если
Ответы (1)
Верно ли утверждение: 1) если произведения двух чисел делится на некоторое число, то хотя бы 1 из них делится на это число. 2) если ни одно из двух натуральных чисел не делится на некоторое число, то и их произведение не делится на это число.
Ответы (1)
Докажите, что если: 1) число 455 делится на 35, а 35 делится на 7, то 455 делится на 7; 2) число 744 делится на 24, а 24 делится на 6, то 744 делится на 6; 3) число 816 делится на 48, а 48 делится на 8, то 816 делится на 8.
Ответы (1)
Запишите наименьшее четырехзначное число, которое: 1) делится на число 3, но не делится на число 5; 2) делится на число 5, но не делится на число 7; 3) делится на число 9, но не делится на число 10; 4) делится на число 7, но не делится на число 9.
Ответы (2)