Задать вопрос
18 марта, 09:22

Пусть s сумма цифр натурального числа n. Найдите все N. для которых N+S (N) = 1999

+4
Ответы (1)
  1. 18 марта, 11:43
    0
    Число четырехзначное, т. к. сумма цифр не больше 36

    пусть число: 1000a + 100b + 10c + d

    тогда

    1000a + 100b + 10c + d + a + b + c + d = 1999

    1001a + 101b + 11c + 2d = 1999

    очевидно, что а = 1

    101b + 11c + 2d = 998

    b = 8 или b = 9

    1) b = 8

    11c + 2d = 190

    99 + 18 < 190 - не подходит

    2) b = 9

    11c + 2d = 89

    c = 7

    2d = 12

    d = 6

    Ответ: 1976
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Пусть s сумма цифр натурального числа n. Найдите все N. для которых N+S (N) = 1999 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Расставьте знаки действий "+", "-", "х", " : " и скобки, чтобы получить верное равенство: 1999=3 1999=1 1999=9 1999=10
Ответы (1)
Всего два вопроса: 1. Может ли сумма цифр натурального числа быть равной сумме цифр квадрата этого числа? 2. Может ли сумма цифр натурального числа быть больше суммы цифр квадрата этого числа?
Ответы (1)
Пусть S (N) - сумма цифр натурального числа N. Найдите все N, для которых N + S (N) = 1999.
Ответы (1)
Найдите значение разности: 1) наименьшего трехзначного натурального числа и наибольшего четырехзначного натурального числа 2) наибольшее пятизначного натурального числа и наименьшего шестизначного натурального числа
Ответы (1)
Какое число является наименьшим кратным натурального числа а? какое число является наибольшим кратным натурального числа а? сколько существует кратных данного натурального числа а? Какое число является делителем любого натурального числа?
Ответы (2)