Задать вопрос
28 ноября, 09:19

Две вершины центр вписанной окружности и точка пересечения высот остроугольного угольника лежат на одной окружности Найдите угол при Третьей вершине

+2
Ответы (1)
  1. 28 ноября, 11:29
    0
    Пусть окружность проходит через вершины А и B треугольника ABC, H - точка пересечения высот и О - центр вписанной окружности. Т. к. О - точка пересечения биссектрис, то ∠AOB=90°+∠C/2. Т. к. ∠AOB и ∠AHB опираются на общую дугу и ∠AHB - смежный к углу равному ∠С, то ∠AOB=∠AHB=180°-∠С. Итак, 90°+∠C/2=180°-∠С, откуда ∠С=60°.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Две вершины центр вписанной окружности и точка пересечения высот остроугольного угольника лежат на одной окружности Найдите угол при ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
1) центр окружности вписанной в правильный треугольник является точка пересечения его медиан. 2) центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Ответы (1)
1) Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 14. Площадь поверхности этого параллелепипеда равна 568. Найдите третье ребро, выходящее из той же вершины.
Ответы (1)
В остроугольном треугольнике АВС точки А, С, центр описанной окружности О и центр вписанной окружности I лежат на одной окружности. Докажите что угол АВС равен 60º.
Ответы (1)
В треугольнике RLM угол L тупой, а сторона КМ равна 6. Найдите радиус описанной около треугольника KLM окружности, если известно, что на этой окружности лежит центр окружности, проходящей через вершины К и М и точку пересечения высот треугольника
Ответы (1)
В равнобедренном треугольнике ABC AB=BC=11 AC=14 найти расстояние от вершины B до а) точки M пересечения медиан б) точки О1 пересечения биссектрис в) точки О пересечения серединных перпендикуляров сторон г) точки H пересечения высот
Ответы (1)