Задать вопрос
3 октября, 23:29

Найти все пары натуральных чисел, НОД которых равен 5, а НОК равен 105

+5
Ответы (1)
  1. 4 октября, 00:12
    0
    Решение:

    Разложим числа на простые множители.

    55

    1053 355 77

    Т. е. мы получили, что:

    5 - простое число.

    105 = 3•5•7

    Находим общие множители (они выделены цветом).

    НОД (5, 105) = 5

    Чтобы найти НОК объединяем множители и перемножаем их:

    НОК (5, 105) = 3•5•7 = 105

    Или можно воспользоваться формулой:

    НОК (a, b) = (a•b) / НОД (a, b)

    НОК (5, 105) = (5•105) / НОД (5, 105) = 105 Ответ:

    НОД (5, 105) = 5

    НОК (5, 105) = 105
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти все пары натуральных чисел, НОД которых равен 5, а НОК равен 105 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите НОД для чисел: а) НОД (8; 4) = в) НОД (11; 7) = НОД (8; 6) = НОД (11; 10) НОД (8; 10) = НОД (11; 55) НОД (8; 12) = НОД (11; 121) НОД (8; 15) = НОД (11; 333) б) НОД (15; 3) = г) НОД (14; 6) НОД (15; 25) = НОД (14; 28) НОД (15; 35) = НОД (14;
Ответы (2)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)