Задать вопрос
12 мая, 09:23

Внутри равностороннего треугольника с высотой 6 см взята точка. Найти сумму расстояний от этой точки до сторон треугольника.

+1
Ответы (1)
  1. 12 мая, 12:20
    0
    Пусть внутри равностороннего треугольника ABC взяли точку O. Площадь треугольника ABC равна сумме площадей треугольников AOB, BOC, AOC. Площадь треугольника AOB можно записать как 1/2*a*h1, где a - сторона AB исходного равностороннего треугольника, h1 - высота треугольника AOB, проведённая из вершины O. Она и будет расстоянием от O до стороны AB. Аналогично, площади треугольников BOC и AOC можно записать соответственно как 1/2*a*h2, 1/2*a*h3, где h2, h3 - расстояния от O до двух других сторон треугольника. Сложив эти три площади, получим, что 1/2*a * (h1+h2+h3) = 1/2*a*h, где h - высота исходного равностороннего треугольника. Значит, h1+h2+h3=h, то есть сумма расстояний от любой точки внутри треугольника до его сторон постоянна и равна высоте этого треугольника, в нашем случае 6 см.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Внутри равностороннего треугольника с высотой 6 см взята точка. Найти сумму расстояний от этой точки до сторон треугольника. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы