Задать вопрос
19 июля, 16:53

Высота правильной треугольной пирамиды равна 12, а одна из высот основания равна 7,5.

Найдите боковое ребро пирамиды.

+5
Ответы (1)
  1. 19 июля, 17:48
    0
    Высота основания равна 7.5, найдем радиус описанной окружости у основания по формуле: r = 2h/3 = 2*7,5 / 3 = 5 получается прямоугольный треугольник с катетами (высота пирамиды и радиусом оп. окружности, и гипотенузой = ребро) по теореме пифагора найдем, что:H" = 169 - 25 = 144 = 12 H = 12

    уже был такой вопрос
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Высота правильной треугольной пирамиды равна 12, а одна из высот основания равна 7,5. Найдите боковое ребро пирамиды. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
1) Боковое ребро правильной треугольной пирамиды равно 6 и наклонено к плоскости основания под углом 30 градусов. Найти высоту пирамиды 2) Высота правильной четырехугольной пирамиды равна 4. Боковое ребро равно 5. Найти диагональ основания пирамиды.
Ответы (1)
1. высота правильной треугольной пирамиды равна 20 боковое ребро наклонено к плоскости основания под углом 60 вычислите длину бокового ребра и длину окружности описанной около основания пирамиды 2.
Ответы (1)
В правильной треугольной пирамиде сторона основания равна 12 см, а боковое ребро 10 см. Найдите: 1) Высоту пирамиды ; 2) Угол, образованный боковым ребром и плоскостью основания пирамиды; 3) Угол между боковой гранью и плоскостью основания пирамиды;
Ответы (1)
Геометрия, помогите решить. 1) Высота правильной шестиугольной пирамиды равна 5. Боковое ребро наклонено к плоскости основания под углом 30 градусов. Найти высоту пирамиды 2) Диагональ основания правильной четырехугольной пирамиды равна 6, высота 4.
Ответы (1)
Вычислите высоту правильной треугольной пирамиды, у которой: а) каждое ребро равно 1; б) боковое ребро равно 3, а ребро основания равно 2; в) боковое ребро равно 1, а угол при вершине в боковой грани равен 90 градусов.
Ответы (1)