Задать вопрос
10 января, 16:14

На плоскости изображена окружность радиуса 2000. Найдите ГМТ M, для каждой из которых расстояние до ближайшей к M точки окружности равно 1.

+1
Ответы (1)
  1. 10 января, 17:27
    0
    1) Пусть точка M лежит вне окружности. O - центр окружности, точка T - пересечение отрезка OM и окружности. Возьмем на окружности точку T1, не лежащую на OM. В треугольнике MT1O сторона OM меньше суммы двух других сторон (неравенство треугольника),

    MT+OT
    Таким образом, чтобы длина MT была минимальной, T должна лежать на OM. Если M вне окружности, MT=1, OT=2000, то OM=MT+OT=2001. Искомое ГМТ - окружность радиусом 2001 с центром данной окружности.

    2) Аналогично доказывается, что если точка M лежит внутри окружности, то искомое ГМТ - окружность радиусом 1999 (OM=OT-MT) с центром данной окружности.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «На плоскости изображена окружность радиуса 2000. Найдите ГМТ M, для каждой из которых расстояние до ближайшей к M точки окружности равно 1. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы