Задать вопрос
3 декабря, 07:16

В прямоугольном треугольнике угол между медианой и биссектрисой, проведенными из вершины прямого угла, равен 13 градусам. Найдите больший из двух острых углов треугольника.

+2
Ответы (1)
  1. 3 декабря, 09:04
    0
    По условию, МСН = 13°.

    1) Сумма острых углов СМН, МСН прямоугольного треугольника НСМ равна 90o. Значит, СМН = 90o - МСН = 90o - 13o = 77o

    2) Треугольник АМС равнобедренный, т. к. СМ равна половине гипотенузы по свойству из п. 3 "Что необходимо знать для решения", а АМ равна половине гипотенузы, т. к. СМ - медиана. Отсюда следствие: угол А равен углу АСМ по свойству углов при основании равнобедренного треугольника.

    3) Угол СМН внешний по отношению к треугольнику АМС. Он равен сумме двух внутренних А и АСМ, с ним не смежных. Но А = АСМ как углы при основании равнобедренного треугольника. Следовательно, А = АСМ = 77o : 2 = 38,5o

    4) Один острый угол А треугольника АВС мы нашли. Теперь найдем второй. Сумма острых углов А, В прямоугольного треугольника АВС равна 90o. Значит, В = 90o - А = 90o - 38,5o = 51,5o

    Больший угол равен 51,5o.

    Ответ: 51,5°
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В прямоугольном треугольнике угол между медианой и биссектрисой, проведенными из вершины прямого угла, равен 13 градусам. Найдите больший ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы