Задать вопрос
26 августа, 20:44

Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух других сторон. Найдите радиус окружности.

+3
Ответы (1)
  1. 27 августа, 00:20
    0
    Это известный прямоугольный треугольник. Обозначим его АВС. АС=12 основание, угол С=90. ВС=5, гипотенуза АВ=13. Центр О окружности по условию находится на гипотенузе и касается катетов АС и ВС. То есть АС касательная к окружности и перпендикулярна радиусу ОЕ (Е точка касания на АС). Треугольники АВС и АОЕ подобны как прямоугольные с общим острым углом А. Тогда АС/ВС=АЕ/ОЕ. Подставляем 12/5 = (12-R) / R. Отсюда R=3,53.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы