Задать вопрос
26 августа, 20:44

Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух других сторон. Найдите радиус окружности.

+5
Ответы (1)
  1. 27 августа, 00:20
    0
    Это известный прямоугольный треугольник. Обозначим его АВС. АС=12 основание, угол С=90. ВС=5, гипотенуза АВ=13. Центр О окружности по условию находится на гипотенузе и касается катетов АС и ВС. То есть АС касательная к окружности и перпендикулярна радиусу ОЕ (Е точка касания на АС). Треугольники АВС и АОЕ подобны как прямоугольные с общим острым углом А. Тогда АС/ВС=АЕ/ОЕ. Подставляем 12/5 = (12-R) / R. Отсюда R=3,53.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Дан треугольник со сторонами 5,12,13. точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других сторон. найдите радиус окружности.
Ответы (1)
Дан треугольник со сторонами 5 12 13. Точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других сторон. Найдите радиус окружности
Ответы (1)
1) найдите площадь трапеции, вершина которой имеют координаты (-4; 2) (3; 2) (6; 9) (1; 9) 2) дан треугольник со сторонами 8 10 и 6.
Ответы (1)
Укажите номера верных утверждений: 1) Центром описанной окружности треугольника является точка пересечения его высот 2) центром описанной окружности треугольника является точка пересечения его медиан 3) центром описанной окружности треугольника
Ответы (2)
1. Около окружности, радиус которой равен 12, описан правильный шестиугольник. Найдите радиус окружности, описанной около этого шестиугольника. 2 Найдите радиус окружности, вписанной в правильный шестиугольник со стороной 54. 3.
Ответы (1)