Задать вопрос
24 марта, 08:21

Дан треугольник со сторонами 5,12,13. точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других сторон. найдите радиус окружности.

+3
Ответы (1)
  1. 24 марта, 08:38
    0
    Данный треугольник прямоугольный. Поместим вершину прямого угла С в начало координат, вершину В в точку (5; 0), а вершину А в точку (0; 12). Уравнение прямой АВ имеет вид 12 * Х + 5 * Y = 60. Если точка О является центром окружности, касающейся двух других сторон, то она лежит на биссектрисе прямого угла, то есть на прямой Y = X. Координаты точки О находим из системы уравнений прямых АВ и СО

    12 * Х + 5 * Y = 60 X = 60/17

    X = Y, откуда Y = 60/17

    Следовательно R = 60/17
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Дан треугольник со сторонами 5,12,13. точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Дан треугольник со сторонами 5 12 13. Точка О лежит на большей стороне треугольника и является центром окружности, касающейся двух других сторон. Найдите радиус окружности
Ответы (1)
Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух других сторон. Найдите радиус окружности.
Ответы (1)
1) найдите площадь трапеции, вершина которой имеют координаты (-4; 2) (3; 2) (6; 9) (1; 9) 2) дан треугольник со сторонами 8 10 и 6.
Ответы (1)
Укажите номера верных утверждений: 1) Центром описанной окружности треугольника является точка пересечения его высот 2) центром описанной окружности треугольника является точка пересечения его медиан 3) центром описанной окружности треугольника
Ответы (2)
Стороны треугольника 51 см, 85 см и 104 см. Центр окружности, касающейся двух меньших сторон треугольника, лежит на его большей стороне. На какие части делит этот центр большую сторону треугольника?
Ответы (1)