Задать вопрос
6 апреля, 07:55

Найдите площадь правильного треугольника, если радиус описанной около него окружности равен 7 см.

+4
Ответы (1)
  1. 6 апреля, 10:43
    0
    R=a*sqrt (3) / 3

    где, sqrt (3) - это корень из 3

    a=3R/sqrt (3) = 3*7/sqrt (3) = 21/sqrt (3) - сторона треугольника

    Площадь правильного треугольника:

    S=sqrt (3) * a^2/4

    Подставим и получим:

    S=sqrt (3) * 21^2 / (3*4) = 147*sqrt (3) / 4=36,75*sqrt (3)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите площадь правильного треугольника, если радиус описанной около него окружности равен 7 см. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
1. Около окружности, радиус которой равен 12, описан правильный шестиугольник. Найдите радиус окружности, описанной около этого шестиугольника. 2 Найдите радиус окружности, вписанной в правильный шестиугольник со стороной 54. 3.
Ответы (1)
1) Найдите сторону правильного треугольника, если радиус описанной около него окружности равен 2 м. 2) Найдите радиус окружности, вписанной в правильный треугольник, если радиус описанной около него окружности 2 м.
Ответы (1)
1. Радиус окружности описанной около равнобедренного прямоугольного треугольника равен 34. найти катет этого треугольника 2. найти радиус окружности описанной около прямоугольного треугольника с катетами 16 и 12 3.
Ответы (1)
1. В треугольнике ABC угол C равен 45° АВ=6 корней из 2, Найдите радиус окружности, описанной около этого треугольника. 2. В треугольнике ABC угол C равен 60° АВ 12 корней из 3, Найдите радиус окружности, описанной около этого треугольника. 3.
Ответы (1)
1) Если периметр равностороннего треугольника равен 27 см, то радиус окружности, описанной около этого треугольника, равен: 2) радиус окружности, описанной около правильного шестиугольника, равен 5 см, а периметр шестиугольника равен: 3) В круг
Ответы (1)