Задать вопрос
28 сентября, 05:26

в кубе AD1 через середину ребер AB, DС и вершину D1 проведено сечение. Найдите объем куба если площадь этого сечения равно 4 корня из пяти делить на два

+2
Ответы (1)
  1. 28 сентября, 09:25
    -1
    Пусть М - середина АВ, N - середина DC, тогда плоскость сечения проходит через М, N, D1, и, как не трудно увидеть, А1 (легко видеть, что в плоскости сечения есть прямая, параллельная А1D1 - это MN, и плоскость содержит одну точку этой прямой, то есть вся прямая A1D1 лежит в этой плоскости).

    DN = а*корень (1 + (1/2) ^2) = а*корень (5) / 2;

    Площадь сечения S = a^2*корень (5) / 2, поэтому а = 2, V = 8.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «в кубе AD1 через середину ребер AB, DС и вершину D1 проведено сечение. Найдите объем куба если площадь этого сечения равно 4 корня из пяти ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Домашнее задание 1. В цилиндре с радиусом 5 см проведено сечение, параллельное оси и отстоящее от нее на расстоянии 3 см. Найдите высоту цилиндра, если площадь этого сечения 64 см-. 2. Угол при вершине осевого сечения конуса 60', высота 1 см.
Ответы (1)
В правильной четырехугольной парамиде sabcd с основанием abcd проведено сечение через середины ребер ab И bc и вершину s. Найдите площадь этого сечения, если все ребра пирамиды равны 8
Ответы (1)
Задача 7. Сумма углов На стороне AB равностороннего треугольника ABC выбрали 6 точек D1, D2, ..., D6, делящих сторону AB на равные части, то есть AD1=D1D2= ...=D6B. На стороне BC выбрали такую точку P, что AD1=CP.
Ответы (1)
Радиус основания конуса равен 6, а высота конуса равна 8. В конусе проведено сечение плоскостью, проходящей через вершину конуса. Площадь сечения 25*sqrt (3). Найдите угол между плоскостью основания и плоскостью сечения
Ответы (1)
через вершину конуса проведено сечение под углом 30 градусов к его высоте. Найдите площадь сечения, если высота конуса равна 3 корня из 3 см, а радиус-5 см.
Ответы (1)