Задать вопрос
9 июля, 01:31

Диагонали ромба равны 12 см и 16 см. Точка P расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см. Определите расстояние от точки P до плоскости ромба

+1
Ответы (1)
  1. 9 июля, 03:58
    0
    Фигура в описании - пирамида, в основании ромб, у которого диагонали пересекаются под прямым углом. Рассмотрим любой из четырех треугольников в основании пирамиды - они все прямоугольные с катетами по 12:2 = 6 см и 16:2=8 см. соответственно гипотенуза или любая сторона ромба по теореме пифагора равна: корень из 36+64=корень из 100=10 (см).

    Расстояние от точки P до плоскости ромба - это высота пирамиды, а так как Точка P, расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см, то расстояние от точки P до плоскости ромба - высота пирамиды, основание которой находится в центре вписанной окружности в ромб. Проведем отрезок из основания высоты (это центр вписанной окружности) к стороне ромба, этот отрезок перпендикулярен стороне ромба. Найдем высоту пирамиды как катет прямоугольного треугольника по теореме пифагора, где гипотенуза - это апофама пирамиды и по условию равна 8 см. А катет как радиус окружности из соотношений в прямоуг. треугольнике. r^2 = (8^2/10) * (6^2/10) = (8*6/10) ^2, r=4,8, тогда высота = корень из 64-23,04=корень из 40,96 = 6,4 (см).
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Диагонали ромба равны 12 см и 16 см. Точка P расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см. Определите расстояние ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы