Задать вопрос
6 июля, 16:00

Дано: Треугольник ABC - равнобедренный. AB - биссектриса угла DBC. Доказать DB параллельно АC.

+1
Ответы (1)
  1. 6 июля, 16:49
    0
    Дано: треугольник АВС; AД - биссектриса AO = OД MO перпендикулярно AД Доказать: что AВ параллельно MД Доказательство: 1) Рассмотрим треугольники АОМ и ОМД. У них сторона МО - общая, АО = ОД по условию задачи, угол ДОМ = углу АОМ = 90 градусов так, как MO перпендикулярно AД. Следовательно треугольники АОМ = ОМД; 2) Тогда угол МДО = углу ОМА = углу ВАД так, как AД - биссектриса; 3) Углы МДО и АВД - накрест лежащие для прямых МД и АВ и секущей АД. Так, как угол МДО = углу ВАД, то прямые МД и АВ параллельны. Доказано.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Дано: Треугольник ABC - равнобедренный. AB - биссектриса угла DBC. Доказать DB параллельно АC. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы