Задать вопрос
7 мая, 16:57

В треугольнике ABC ∠A = 24°, а биссектрисы, проведенные из вершин B и C, пересекаются в точке O. Найдите угол BOC.

+5
Ответы (1)
  1. 7 мая, 17:45
    0
    Найдем сумму углов∠ B и ∠ C: ∠B+∠C=180-∠A=180-24=156. BO и CO - биссектрисы. Отсюда ∠ABO+∠ACO=∠CBO + ∠BCO

    ∠ABO+∠ACO = (∠B+∠C) / 2=156/2=78⇒∠CBO+∠BCO=78

    ∠BOC=180 - (∠CBO+∠BCO) = 180-78=102

    Ответ: ∠BOC=78
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике ABC ∠A = 24°, а биссектрисы, проведенные из вершин B и C, пересекаются в точке O. Найдите угол BOC. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Известно, что углы AOB и BOC являються смежными. Найти эти углы, если a) угол AOB больше угла BOC НА 40 б) Угол AOB в 4 раза меньше угла BOC в) угол AOB = угол BOC+44 г) угол AOB=5 • угол BOC
Ответы (1)
1. В треугольнике ABC: A = 83 C = 32 Найдите угол B. 2. В равнобедренном треугольнике ABC, сторона BC - основание Найдите угол B, если известно, что A = 170 3. Биссектрисы углов A и B треугольника ABC пересекаются в точке M.
Ответы (1)
1) В равностороннем треугольнике ABC биссектриса CN и AM пересекаются в точке P. Найдите угол MPN 2) В равностороннем треугольнике ABC бисектрисы BK и AM пересекаются в точке O.
Ответы (1)
Высоты остроугольного треугольника ABC, про- веденные из вершин A и B, пересекаются в точке H, при- чем ∠AHB = 120◦, а биссектрисы, проведенные из вершин B и C, в точке K, причем ∠BKC = 130◦. Найдите угол ABC.
Ответы (1)
1) биссектрисы ad и bc треугольника abc пересекаются в точке o. Найдите угол AOB если угол AOB равен 140 градусам) 2) Периметр равнобедренного треугольника равен 24 см. Один из его сторон равна 6 см. Найдите длину боковой стороны.
Ответы (1)