Задать вопрос
19 марта, 07:09

В треугольнике АВС известны длины сторон АВ=32 АС=64, точка О-центр окружности, описанной около треугольника АВС. Прямая ВД, перпендикулярная прямой АО, пересекает сторону АС в точке Д. Найдите СД

+1
Ответы (1)
  1. 19 марта, 09:10
    0
    Если прямая АО пересекает окружность в точке E, то AE - диаметр, и значит ABE - прямоугольный треугольник. При этом BD лежит на его высоте, проведенной к гипотенузе. Значит ∠ABD=∠AEB=∠ACB. Последнее равенство здесь верно т. к. углы AEB и ACB вписанные в окружность и опираются на одну дугу AB.

    Итак, треугольники ABD и ACB подобны по двум углам. Отсюда AD/AB=AB/AC, т. е. AD/32=32/64, откуда AD=16 и CD=AC-AD=64-16=48.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике АВС известны длины сторон АВ=32 АС=64, точка О-центр окружности, описанной около треугольника АВС. Прямая ВД, ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы