Задать вопрос
6 ноября, 20:42

Из точки А к плоскости В проведены 2 наклонные КР и КD. Найдите растояние от точки К до плоскости В, если КD-KP=2 см, а длины проекций наклонных равны 9 см и 5 см

+4
Ответы (1)
  1. 6 ноября, 22:14
    0
    Если из точки К плоскости β проведены две наклонные, наклонная КР=х см, а наклонная KD = (x+2) cm KO⊥β, то КО - это и есть расстояние от точки К до плоскости β. ΔКОD и ΔКОР - прямоугольные. Применяя теорему Пифагора получаем уравнение: х²-5² = (х+2) ²-9²

    х²-25=х²+4 х+4-81

    4 х=52

    х=13

    наклонная КР=13 см, а наклонная KD=13+2=15 cм

    КО²=13²-5²=169-25=144, КО=√144=12 см
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Из точки А к плоскости В проведены 2 наклонные КР и КD. Найдите растояние от точки К до плоскости В, если КD-KP=2 см, а длины проекций ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Из точки к плоскости проведены две наклонные, длины которых равны 23 и 33 см. Вычислите расстояние от точки до плоскости, если длины ортогональных проекций наклонных на данную плоскость относятся, как 2:3.
Ответы (2)
Из точки вне плоскости проведены наклонные равные 9 и 5 см. Сумма длин проекций этих наклонных равна 8 см. Найти длинны проекций
Ответы (1)
Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найдите проекции этих наклонных.
Ответы (1)
Расстояние от точки до плоскости равно 4 см. Из этой точки до плоскости проведены две наклонные, длины которых равны 5 см и 4√5 см. Угол между проекциями наклонных составляет 90⁰. Найдите расстояние между основаниями наклонных.
Ответы (1)
1) точки к плоскости проведены две наклонные, угол между которыми 60, а угол между их проекциями 90. Длины проекций наклонных на плоскость равны по 3 см каждая.
Ответы (1)