Задать вопрос
30 апреля, 05:09

В треугольнике ABC угол ACB равен 90°, cosA=0,8, AC=4. Отрезок CH - высота тре - угольника ABC. Найдите длину отрезка AH

+2
Ответы (1)
  1. 30 апреля, 06:06
    0
    h2=m·n, a2=m·c, b2=n·c, где a, b - катеты треугольника, c - гипотенуза, h - высота, m - проекция катета a на гипотенузу, n - проекция катета b на гипотенузу
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике ABC угол ACB равен 90°, cosA=0,8, AC=4. Отрезок CH - высота тре - угольника ABC. Найдите длину отрезка AH ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
10. В треугольнике ABC угол A равен 21 градусам, угол B равен 82 градусам, CH - высота. Найдите разность углов ACH и BCH. 11. В треугольнике ABC угол A равен 70 градусам, CH - высота, угол BCH равен 15 градусам. Найдите угол ACB. 12.
Ответы (1)
в треугольнике abc угол с равен 90 ab=4 SinB = √15/4 Найти bc в треугольнике abc угол с равен 90 tgA = 1/3√11 найти SinA в треугольнике abc угол с равен 90 bc=12 ac=16 найти cosA в треугольнике abc угол с равен 90 ac=1, tgA =
Ответы (1)
Геометрия uztest 1) В треугольнике ABC угол C = 90. AB=2 BC = √3. Найти cosA 2) В треугольнике ABC угол C = 90 AC=5. cosA = 5 : √41. Найти ВС. 3) В треугольнике ABC угол C = 90 AC=1.
Ответы (1)
Меньший из отрезков, на которые центр описанной около равнобедренного тре-ка окружности делит его высоту, равен 8 см., а основание тре-ка равно 12 см. Найдите площадь этого тре-ка.
Ответы (1)
1. В равнобндренном треугольнике ABC угол при вершине равен 146 градусов. Найдите угол при основании равнобедренного треугольника. Ответ дайте в градусах. 2. В треугольнике ABC угол ABC = 29 градусов, угол ACB = 65 градусов.
Ответы (1)