Задать вопрос
4 ноября, 08:07

Докажите, что диаметр вписанной в равнобедренный треугольник окружности не может быть равен основанию треугольника

+5
Ответы (1)
  1. 4 ноября, 09:05
    0
    Цитата: "центр О вписанной окружности равноудалён от всех сторон и является точкой пересечения биссектрис треугольника. В равнобедренном треугольнике высота, опущенная на основание, является и биссектрисой и медианой. Значит центр О вписанной окружности лежит на высоте. Тогда радиус вписанной окружности является катетом прямоугольного треугольника, вторым катетом которого является половина основания. Пусть R = половине основания, тогда прямоугольный тр-к будет равнобедренным и половина угла при основании будет равна 45°. Угол при основании тогда = 90°, что невозможно. Итак, радиус не может быть равен половине основания, значит и диаметр впмсанной окружности всегда меньше основания данного нам равнобедренного тр-ка, что и требовалось доказать ...
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что диаметр вписанной в равнобедренный треугольник окружности не может быть равен основанию треугольника ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
помогите плииз 1) из вершины прямого угла С треугольника АВС проведена высота СР. Радиус окружности, вписанной в треугольник ВСР, равен 8, тангенс угла ВАС равен 3/4.
Ответы (1)
1. Около окружности, радиус которой равен 12, описан правильный шестиугольник. Найдите радиус окружности, описанной около этого шестиугольника. 2 Найдите радиус окружности, вписанной в правильный шестиугольник со стороной 54. 3.
Ответы (1)
Центр вписанной в остроугольный равнобедренный треугольник окружности делит высоту, проведенную к основанию, в отношении 5 к 3. Найти радиус описанной окружности, если высота проведенная к основанию, равна 32 см.
Ответы (1)
Помогите с задачками. Тема Вписанная и описанная окружность. 1. В равнобедренном треугольнике высота к основанию равна 16, a радиус вписанной окружности равен 6. Найти радиус описанной окружности. 2.
Ответы (1)
Центр вписанной в треугольник окружности является точкой пересечения его медиан. Этот треугольник ... а) прямоугольный б) равнобедренный в) равносторонний Окружность называется вписанной в многоугольник, если ...
Ответы (1)