Задать вопрос
30 января, 02:44

Стороны треугольника равны 39 см, 65 см и 80 см. Окружность, центр которой принадлежит больше стороне треугольника, касается двух других сторон. На какие отрезки центр этой окружности делит сторону треугольника? с:

+4
Ответы (1)
  1. 30 января, 04:45
    0
    Проведи отрезок из В до О, Точка О лежит на АС. ВО - биссектриса угла В. По свойству биссектрисы получим АВ/ВС = АО/ОС. 39/65 = Х / (80-Х)

    65 Х=39 (80-Х) 65 Х+39 Х = 39*80 104 Х = 3120 Х = 3120/104 Х=30, АО=30,

    ОС=80-30=50
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Стороны треугольника равны 39 см, 65 см и 80 см. Окружность, центр которой принадлежит больше стороне треугольника, касается двух других ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы