Задать вопрос
23 октября, 21:05

Из точки М проведены две касательные к окружности с центром О, А и В - точки касания. Найдите вектор МО * вектор ВА.

+4
Ответы (1)
  1. 24 октября, 00:41
    0
    0, потому что MO и BA перпендикулярны
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Из точки М проведены две касательные к окружности с центром О, А и В - точки касания. Найдите вектор МО * вектор ВА. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
1. Из точки А к окружности с центром О проведены две касательные, К и Р - точки касания. Известно, что угол КАР = 82 градуса. найдите угол РОА 2. К окружности проведены касательные РМ и РН, М и Н - точки касания.
Ответы (1)
Известно что вектор а (-2; 5), вектор b (1; -2). Найдите координаты векторов вектор с = вектор а + вектор б. вектор н = вектор б-вектор а. вектор м = 2 вектор а+3 вектор б?
Ответы (1)
упростить выражение вектор 1. АВ + вектор ВС 2. вектор МN+вектор КЕ+вектор NK 3. вектор АВ+вектор ВЕ+вектор ЕК 4. вектор АР+вектор МВ+вектор РМ+векторВЕ
Ответы (1)
упростите выражение: а) 2 (вектор m+вектор n) - 3 (вектор 4m - вектор n) + вектор m; b) вектор m - 3 (вектор n - вектор 2m + p) + 5 (вектор p - вектор 4m)
Ответы (1)
1) Из точки А проведены две касательные к окружности. Расстояние от точки А до точки касания равно 13, а расстояние между точками касания равно 24. Найдите наибольшее возможное расстояние от точки А до точки на окружности.
Ответы (1)