Задать вопрос
30 сентября, 22:05

Разверткой боковой поверхности конуса является полукруг. Найдите угол при вершине осевого сечения.

+3
Ответы (1)
  1. 30 сентября, 22:44
    0
    Найдем длину окружности основания конуса. Так как развертка боковой поверхности полукруг, то:

    P = 2 ПR

    P (осн. конуса) = 2 ПR/2 = ПR

    Найдем радиус основания конуса:

    r = P / 2 П

    r = ПR / 2 П = R / 2

    Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°.

    30° х 2 = 60°

    Ответ: 60°.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Разверткой боковой поверхности конуса является полукруг. Найдите угол при вершине осевого сечения. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы