Задать вопрос
4 августа, 18:28

Найти наибольшее значение функции y = х^2 + 25/х на отрезке [-10; - 1].

+1
Ответы (1)
  1. 4 августа, 20:42
    0
    1. Находим первую производную функции:

    y' = 2x - 25/x²

    или

    y' = (2x³ - 25) / x²

    2. Приравниваем ее к нулю:

    2x - 25/x² = 0

    x1 = 2, 32

    3. Вычисляем значения функции на концах отрезка

    f (2, 32) = 16, 16

    f (-10) = 97, 5 (max)

    f (-1) = - 24 (min)

    Ответ:f (max) = 97, 5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти наибольшее значение функции y = х^2 + 25/х на отрезке [-10; - 1]. ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы