Задать вопрос
14 апреля, 01:09

Даны две группы подряд расположенных натуральных чисел, в каждой по kk чисел. При некоторых kk эти группы чисел можно, при необходимости изменив порядок, подписать одну под другой так, что, сложив стоящие друг под другом числа, получится снова kk натуральных чисел, идущих подряд. Сколько таких kk, не превосходящих 2013?

+1
Ответы (1)
  1. 14 апреля, 02:31
    0
    Пусть A = (n+1, ..., n+k), В = (m+1, ..., m+k) - исходные наборы подряд идущих чисел. Пусть A' и B' - наборы чисел, которые получаются из А и В перестановкой элементов, причем после суммирования чисел, стоящих в одинаковых местах в A' и B', получается набор подряд идущих натуральных чисел S = (s+1, ..., s+k). Тогда сумма всех чисел в А и В должна равняться сумме чисел в S (т. к. эта сумма не зависит от перестановки элементов), т. е. nk + (k+1) k/2+mk + (k+1) k/2=sk + (k+1) k/2, откуда n+m + (k+1) / 2=s. Значит k обязано быть нечетным.

    Покажем, что при любом нечетном k можно так переставить числа в А и В, что получится требуемый S. Очевидно, что достаточно это сделать в случае когда n=m=0, т. е. A=B = (1, ..., k) т. к. вычитание (или прибавление) к каждому элементу набора фиксированного числа n или m сохраняет "подряд идущесть" как в самих А и В, так и в S. В этом случае s = (k+1) / 2.

    Переставим элементы набора А следующим образом:

    А' = (1, s+1, 2, s+2, 3, s+3, ..., s-1,2s-1, s), т. е. на нечетных местах стоят числа 1,2, ..., s, а на четных местах s+1, s+2, ...,2s-1. Т. е. всего 2s-1=k штук.

    Переставим элементы набора B следующим образом:

    B' = (s, 1, s+1, 2, s+2, 3, ...,2s-2, s-1,2s-1), т. е. на нечетных местах стоят числа s, s+1, ...,2s-1, а на четных местах 1, 2, ..., s-1. Т. е. тоже всего 2s-1=k штук.

    Cкладывая элементы на одинаковых местах в наборах А' и B', получим набор S = (s+1, s+2, s+3, s+4, ..., 3s-3, 3s-2, 3s-1), т. е. набор из последовательных чисел.

    Например, для k=9, s = (9+1) / 2=5,

    A' = (1, 6, 2, 7, 3, 8, 4, 9, 5),

    B' = (5, 1, 6, 2, 7, 3, 8, 4, 9),

    S = (6, 7, 8, 9,10,11,12,13,14).

    Таким образом, нужные k - все нечетные числа не превосходящие 2013, коих 2014/2=1007 штук.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Даны две группы подряд расположенных натуральных чисел, в каждой по kk чисел. При некоторых kk эти группы чисел можно, при необходимости ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы