Задать вопрос
10 января, 16:25

Четвертый член геометрической прогрессии больше второго на 24, а сумма второго и третьего членов прогрессии равна 6. Найдите первый член и знаменатель прогрессии

+2
Ответы (1)
  1. 10 января, 16:36
    0
    Пусть четвертый член (в4) равен х. тогда второй (в2) равен х-24. Получается, что сумма в2 и в3 равна х-24 + в3=6, в3=30-х. Находим среднее геометрическое. (30-х) в квадрате=х (х-24)

    раскрываем и получаем, что х = 25. то есть четвертый член равен 25. второй равен 25-24=1, в3=30-52=5. знаменатель равен 52/5=5. первый член равен 1/5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Четвертый член геометрической прогрессии больше второго на 24, а сумма второго и третьего членов прогрессии равна 6. Найдите первый член и ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
1. Сумма первых восьми членов геометрической прогрессии S8=85/64, а знаменатель q=-1/2. Найдите b1. 2. Сумма n первых членов геометрической прогрессии Sn=25 целых 34/81, ее первый член b1=9 и n-ый член bn=64/81. найдите число n. 3.
Ответы (1)
1. найдите сумму первых шести членов геометрической прогрессии, в которой первый член 8 и q = 1/2 (ответ в книжке 15 целых 3/4) 2. сумма первых четрыех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2.
Ответы (1)
1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32.
Ответы (1)
1. Найти сумму первых семи членов арифметической прогрессии, произведение третьего и пятого членов которой равно второму члену, а сумма первого и восьмого членов равна 2. 2. В геометрической прогрессии b5+b2-b4=66; b6+b3-b5=-132. Найти b15 3.
Ответы (1)