Задать вопрос
1 марта, 10:56

Найдите сумму пяти первых членов геометрической прогрессии (bn) c положительными членами, зная, что b3=3,6 и b5=32,4

+4
Ответы (1)
  1. 1 марта, 12:42
    0
    3.6 = b1 * q^2

    32.4 = b1*q^4

    32.4 = 3.6 / q^2 * q^4

    32.4 = 3.6 * q^2

    q^2 = 9

    q = 3 (так как все члены положительны)

    b1 = 3.6/9 = 0.4

    S 5 = 0,4 (3^5 - 1) / (3-1) = 48.4
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите сумму пяти первых членов геометрической прогрессии (bn) c положительными членами, зная, что b3=3,6 и b5=32,4 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
1. Сумма первых восьми членов геометрической прогрессии S8=85/64, а знаменатель q=-1/2. Найдите b1. 2. Сумма n первых членов геометрической прогрессии Sn=25 целых 34/81, ее первый член b1=9 и n-ый член bn=64/81. найдите число n. 3.
Ответы (1)
1) Найдите сумму первых 25 членов арифметической прогрессии - 2; 1; 2 ... 2) Найдите сумму первых 6 членов геометрической прогрессии 32:27: 16:9; ... 3) Найдите сумму бесконечной геометрической прогрессии 6:4; ...
Ответы (1)
1. найдите сумму первых шести членов геометрической прогрессии, в которой первый член 8 и q = 1/2 (ответ в книжке 15 целых 3/4) 2. сумма первых четрыех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2.
Ответы (1)
1. Найти а6 геометрической прогрессии (ап), если а1=0,81; q = - 1/8. 2. В геометрической прогрессии (ап) а1=6, q=2. Найти S7. 3. Найти сумму бесконечной геометрической прогрессии: - 40, 20, - 10, ... 4.
Ответы (1)