Задать вопрос
16 марта, 03:36

Докажите что если в уравнении x²+px+q+0 коэффиценты p и q целые числа и уравнение имеет рациональные корни то эти корни целые числа

+2
Ответы (1)
  1. 16 марта, 06:17
    0
    Если это уравнение имеет рациональный, но не целый корень, то этот корень всегда можно записать в виде m/n, при этом m, n - взаимно просты и n>1.

    Тогда m²/n²+pm/n+q=0. Умножим это равенство на n и перенесем слагаемые в правую часть. Получим m²/n=-qn-pm, т. е. число m²/n - целое. Поэтому, если r - это какой-нибудь простой делитель числа n, то r делит m², а значит r делит m. Т. е., получается, что m и n не взаимно просты. Противоречие. Значит n=1, т. е. m/n - целое.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите что если в уравнении x²+px+q+0 коэффиценты p и q целые числа и уравнение имеет рациональные корни то эти корни целые числа ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы