Задать вопрос
2 апреля, 02:09

при каком значении параметра А система уравнений имеет а) одно решение б) три решения

{x^2+y^2=3 и y-x^2=A

+5
Ответы (1)
  1. 2 апреля, 05:05
    0
    Если (х, у) - какое-то решение системы, то т. к. х встречается только в квадрате, то (-х, у) - тоже решение, Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.

    1) Если A=√3, то y=x²+√3,

    (x²+√3) ²+x²=3

    x⁴ + (2√3+1) x²=0

    x² (x²+2√3+1) = 0

    x=0; x²+2√3+1=0 действительных корней не имеет.

    Итак, в этом случае 1 решение.

    2) Если A=-√3, то y=x²-√3,

    (x²-√3) ²+x²=3

    x⁴ + (-2√3+1) x²=0

    x² (x²-2√3+1) = 0

    x=0; x²=2√3-1>0 - дает еще два решения.

    Итак, в этом случае 3 решения.

    Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т. е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «при каком значении параметра А система уравнений имеет а) одно решение б) три решения {x^2+y^2=3 и y-x^2=A ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Решите систему уравнений методом подстановки x*y = - 2 x+y = 1 3. решите графически систему уравнений x^2+y^2 = 1 x-y = 1 4. При каком параметра m система уравнений имеет а) одно решение; б) три решения? x^2+y+2=0 x^2+y^2=m
Ответы (1)
3x-5y=4 ax+15y=-12 При каком значении "а" система уравнений имеет: 1 решение Множество решений 2 задание ax+y=9 5x-4=-36 При каком значении "а" система уравнений имеет: 1 решение Множество решений
Ответы (1)
При каких значениях параметра (p) (b) уравнение имеет два различных действительных корня? 1) 4x^2+p=0 2) bx^2-5x+1/4b=0 При каких значениях параметра (t) (a) уравнение имеет ровно один корень (два равных корня) ?
Ответы (1)
1) При каком значение параметра а, система имеет б/много решений. ах+у=1 4 х-2 у=а 2) И при каком значение параметра а, система имеет ед. решение ах+2 у=3 8 х+ау = а+2
Ответы (1)
При каком значении параметра А система уравнений имеет: 1) одно решение 2) три решения? x в квадрате + y в квадрате = 3 y - x в квадрате = A
Ответы (2)