Задать вопрос
16 октября, 18:46

1) Стороны треугольника равны 14 см, 42 см и 40 см. Найдите периметр подобного ему треугольника, сумма наибольшей и наименьшей равна 108 см 2) Сходственные стороны подобных треугольников относятся как 8 : 5, а разность площадей треугольников равна 156 см в квадрате. Найдите площади этих треугольников.

+1
Ответы (1)
  1. 16 октября, 19:30
    0
    1) Периметр в 2 раза больше, т. к коэф. подобия равен 2-ум

    2) площади соотносятся как квадрат коэф. подобия, поэтому 64x-25x=156, откуда площадь 1 треугольника - 256 см квадратных, а второго - 100 см квадратных
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «1) Стороны треугольника равны 14 см, 42 см и 40 см. Найдите периметр подобного ему треугольника, сумма наибольшей и наименьшей равна 108 см ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Задание 1) найдите одночлен, равный сумме подобных одночленов: А) 2x+3x= Б) 3m+5m= В) a+4a+a= Г) 3b+b+b= Д) 2a+4a+6a= Е) 4ab+ab+12ab= Ж) 17a в квадрате+13a в кубе+11a в кубе= З) 15a в квадрате b+14a в квадрате b+7a в квадрате b=
Ответы (1)
Стороны треугольника АВС относятся как 7:2:6. Разность между наибольшей и наименьшей стороной подобного ему треугольника А1 В1 С1 равна 20 см. Найдите периметр треугольника А1 В1 С1.
Ответы (1)
Разложите многочлеч на множители : A) X в квадрате - 196 b) 4 - 36 а в квадрате c) а в квадрате - 9 б в квадрате Д) 49 Х в квадрате - 121 а в квадрате И) Х в квадрате Y в квадрате - 1 F) с в квадрате д в квадрате - м в квадрате г) 144 а в четвертой
Ответы (1)
8273 мм в квадрате = см в квадрате? мм в квадрате? 1486 см в квадрате = ? дм в квадрате? см в квадрате? 2589 дм в квадрате=? м в квадрате? дм в квадрате? 3760 дм в квадрате=? а? м в квадрате? 760 мин=? ч? мин? 300 с=? мин? с? 45 ч=? сут? ч? 3620 с=?
Ответы (1)
Разложить на множители выражение у в квадрате х + у + ух в квадрате + х + 4 ух + 4 х в квадрате + х - ху - у в квадрате + у в кубе - ху в квадрате 3 х в квадрате + 2 х - ху - 2 у в квадрате + у в кубе - 3 ху в квадрате х в квадрате + х - ху - у в
Ответы (1)