Задать вопрос
18 мая, 01:22

Существует ли 3 различных действительных числа, каждое из которых в сумме с произведением двух оставшихся даёт одно и то же число?

+3
Ответы (1)
  1. 18 мая, 04:38
    0
    Пусть a, b, c - данные числа. Пусть все три суммы a+bc, b+ca, c+ab равны одному и тому же числу s. Тогда a2+abc=sa, b2+abc=sb, c2+abc=sc. Обозначая abc=p, получаем, что числа a, b, c являются корнями квадратного уравнения x2-sx+p=0. Поскольку у квадратного уравнения имеется не более двух различных корней, то по крайней мере два из чисел a, b, c должны совпадать. Ответ: не существуют.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Существует ли 3 различных действительных числа, каждое из которых в сумме с произведением двух оставшихся даёт одно и то же число? ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Найти наименьшее положительное натуральное число, которое будучи разделено на 2, дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3, при делении на 5 дает в остатке 4, при делении на 6 дает в остатке 5, а при
Ответы (1)
1) найдите наименьшее число, которое при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3, при делении на 5 дает в остатке 4, при делении на 6 дает в остатке 5. 2) решите уравнение: x^4-4x^3+8x+3=0
Ответы (2)
1) приведите примеры линейных уравнений с действительными коэффициентами, которые не имеют действительных корней 2)) приведите примеры квадратных уравнений с действительными коэффициентами, которые не имеют действительных корней 3) укажите хотя бы
Ответы (1)
А) Даны четыре последовательных натуральных числа. Разность между произведением двух больших чисел и произведением двух меньших равна 50. Найдите эти числа. б) Велосипедист проехал в первый день 0.3 всего пути.
Ответы (1)
Найдите наименьшее натуральное число, которое при деление на 22 дает в остатке 14, а при делении на 17 дает в остатке 9. найдите наибольшее трехзначное число, которое при делении на 13 дает в остатке 10, а на 8, дает в остатке 2
Ответы (1)