Задать вопрос
7 июля, 00:15

Найти объём тела, образованного вращением вокруг оси Ox фигур, ограниченных линиями.

+4
Ответы (1)
  1. 7 июля, 01:53
    0
    y=√x

    y=x^2

    Найдем точки пересечения этих графиков

    √x=x^2

    x=0

    x=1

    при x=0 y=0

    при x=1 y=1

    то есть интегрировать будем от 0 до 1

    Воспользуемся формулой

    v=pi * ∫y^2dx от a до b

    Найдем объем тела, образаваного вращением вокруг оси линии x^2=y

    v1=pi * ∫xdx от 0 до 1 = pi * (x^2/2 от 0 до 1) = pi/2

    Найдем объем тела, образоаваного вращением вокруг оси линии x=y^2

    v2=pi * ∫x^4dx от 0 до 1 = pi * (x^5/5 от 0 до 1) = pi/5

    Искомый объем равен

    v=v1-v2=pi/2-pi/5=3pi/10
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти объём тела, образованного вращением вокруг оси Ox фигур, ограниченных линиями. ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике