Задать вопрос
2 марта, 13:51

Олимпиадная задача по теории вероятности. По дорогу едут 20 машин, каждая со своей скоростью. Если быстрая машина догоняет медленную, то быстрой приходиться замедлиться и машины сбиваются в группы. Найдите вероятность того, что пятая машина "одинока", то есть не входит ни в какую группу.

+4
Ответы (1)
  1. 2 марта, 14:49
    0
    Я считаю, что 20 машин фиксированы, а случайность здесь - порядок машин на трассе.

    Рассмотрим первые 6 машин. Чтобы пятая машина была "одинокой", все машины, которые едут впереди неё, должны быть её быстрее, а шестая - медленнее. Значит, пятая и шестая машины среди этих машин на пятом и шестом месте по скорости.

    Всего есть 6! расстановок из шести машин. Удовлетворяют условию 4! из них: первые 4 по скорости машины расставляем произвольно на первые 4 места, пятое и шестое заполняются однозначно. Вероятность 4!/6! = 1/30.

    Ответ: 1/30.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Олимпиадная задача по теории вероятности. По дорогу едут 20 машин, каждая со своей скоростью. Если быстрая машина догоняет медленную, то ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Раставь машины на парковке в правильном порядке Условия одинаковые машины не стоят рядом жёлтая машина над феолетовой у всех машин кроме жёлтой есть сосед того же цвета по диагонали жёлтая машина справа феолетовой Всего машин 8 голубая, голубая,
Ответы (1)
Две машины выезжают одновременно в одном направлении из двух пунктов, расстояние между которыми 80 км. Скорость одной машины 80 км/ч, другой-70 км/ч. Через какое время более быстрая машина догонит более медленную?
Ответы (1)
Две машины выехали одновременно в одном направлении из двух пунктов, расстояние между которыми 80 км. Скорость первой 80 км/ч, другой 70 км/ч. Через какое время более быстрая машина догонит медленную?
Ответы (1)
1) В мастерской было на ремонте 6 машин. Через день 3 машины вернули после ремонта, а затем поставили на ремонт еще 2 машины. Сколько машин стало в мастерской? 6 - 3 + 2 = 5. 2) В мастерской было на ремонте 6 машин.
Ответы (2)
Теория вероятности. На экзамене по геометрии школьнику достается одна задача из сборника. Вероятность того, что это окажется задача по теме "Углы", равна 0.35. Вероятность того, что это окажется задача по теме "Окружность", равна 0.45.
Ответы (1)