Задать вопрос
26 июля, 17:49

Мальвины была открытка в форме бумажного треугольника.

Сегодня она задала Буратино с помощью этой открытки такую задачу. Мальвина обозначила вершины треугольника буквами A, B и C и измерила длины сторон треугольника, они оказались такими: BC=7, AC=3, AB=6. Затем она сложила треугольник (перегнула по прямой) так, что вершина C оказалась на стороне AB. Кроме того, в получившемся четырёхугольнике оказались равны два угла, примыкающие к линии сгиба. Буратино нужно найти длину меньшего из отрезков, на которые делит сторону AB попавшая туда вершина C.

Помогите ему справиться с этой задачей: найдите искомую длину отрезка.

+1
Ответы (1)
  1. 26 июля, 19:05
    0
    0 Пусть C' - - место, в которое попала точка C после сгиба. Отрезок CC' перпендикулярен линии сгиба. Из равенства двух углов четырёхугольника, примыкающих к линии сгиба, следует равенство углов перегибаемого треугольника, примыкающего к той же линии. Значит, он равнобедренный, а его высота CC' является биссектрисой. По её известному свойству, отношение BC':C'A равно отношению BC:CA=7:3. Полагая BC'=7x, C'A=3x и складывая, имеем 10x=BA=6, откуда x=3/5. Длина меньшего из отрезков равна 3x=9/5.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Мальвины была открытка в форме бумажного треугольника. Сегодня она задала Буратино с помощью этой открытки такую задачу. Мальвина ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы