Задать вопрос
16 ноября, 15:41

2. Даны вершины треугольника ABC. Найти: 1) длину стороны АВ; 2) уравнение медианы CM, проведенной из вершины С; 3) уравнение высоты СH, проведенной из вершины С; 4) уравнение прямой L, проходящей через вершину С параллельно стороне АВ; 5) длину высоты СH. Сделать чертеж. 3. A (-1; 1), B (5; 4), C (2; 5). 4. A (-1; 1), B (-7; 4), C (-4; 5).

+5
Ответы (1)
  1. 16 ноября, 18:32
    -1
    Очень легко тут ответ 10000
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «2. Даны вершины треугольника ABC. Найти: 1) длину стороны АВ; 2) уравнение медианы CM, проведенной из вершины С; 3) уравнение высоты СH, ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Даны вершины треугольника ABC. Найти: 1) длину стороны ВС; 2) уравнение высоты из вершины А и её длину; 3) уравнение медианы из вершины А; 4) записать уравнение прямой, проходящей через вершину А параллельно стороне ВС; 5) построить чертеж. 9.
Ответы (1)
Даны вершины A (-1,1), B (5,4), C (2,5) треугольника. Найти: 1. длину стороны АВ и её уравнение; 2. уравнение высоты, проведенной через вершину С; 3. уравнение медианы, проведенной через вершину С; 4. точку пересечения высот треугольника; 5.
Ответы (1)
Даны вершины треугольника ABC: А (х1, у2), В (х2, у2) С (х3, у3). Найти: а) уравнение стороны AB, BC, ACб) уравнение высоты CHв) уравнение медианы AMг) точку N пересечения медианы AM и высоты CHд) уравнение прямой, проходящей через вершину C
Ответы (1)
Даны вершины А, В, и С треугольника. найти: 1. длину стороны АВ. 2. уравнение сторон АВ и АС. 3. угол ВАС. 4. Уравнение высоты СД, опущенной из вершины С и ее длину. 5. Уравнение медианы, проведенной через вершину С. 6.
Ответы (1)
Даны вершины треугольника ABC: A (x1; y1), B (x2; y2), C (x3; y3) A (1; - 3), B (0; 7), C (-2; 4) Найти: а) Уравнение стороны AB б) Уравнение высоты CH в) Уравнение медианы AM г) Точку N пересечения медианы AM и высоты CH д) Уравнение прямой,
Ответы (1)