Задать вопрос
12 апреля, 11:44

1. Составить каноническое уравнение прямой проходящей через точки M1 (2,-4,-7) M2 (7,2,7)

2. Записать уравнение прямой х+9/5=у-1/4=z+2/1 в параметрической форме.

3. Привести уравнение 16 х^2+36 у^2+9z^2 + 64x-144y+54z=0 к каноническому виду, найти его полуоси и координаты центра. (Эллипсоид)

+4
Ответы (1)
  1. 12 апреля, 13:05
    0
    1) Каноническое уравнение прямой в пространстве, проходящей через точки M1 (x1, y1, z1) и M2 (x2, y2, z2) имеет вид:

    (x-x1) / (x2-x1) = (y-y1) / (y2-y1) = (z-z1) / (z2-z1). Подставляя координаты точек М1 и М2, получаем: (x-2) / 5 = (y+4) / 6 = (z+7) / 14. Ответ: (x-2) / 5 = (y+4) / 6 = (z+7) / 14.

    2) (x+9) / 5 = (y-1) / 4 = (z+2) / 1=t⇒x=5*t-9, y=4*t+1, z=t-2. Ответ: x=5*t-9, y=4*t+1, z=t-2.

    3) 16*x²+36*y²+9*z²+64*x-144*y+54*z=16 * (x²+4*x) + 36 * (y²-4*y) + 9 * (z²+6*z) = 16*[ (x+2) ²-4]+36*[ (y-2) ²-4]+9*[ (z+3) ²-9]=16 * (x+2) ²+36 * (y-2) ²+9 * (z+3) ²-289=0, 16 * (x+2) ²+36 * (y-2) ²+9 * (z+3) ²=289, 16 * (x+2) ²/289+36 * (y-2) ²/289+9 * (z+3) ²/289=1, (x+2) ² / (289/16) + (y-2) ² / (289/36) + (z+3) ² / (289/9) = 1. Но 289/16 = (17/4) ², 289/36 = (17/6) ², 289/9 = (17/3) ², и уравнение принимает вид: (x+2) ² / (17/4) ² + (y-2) ² / (17/6) ² + (z+3) ² / (17/3) ²=1. Вспоминая уравнение эллипсоида x²/a²+y²/b²+z²/c²=1, заключаем, что перед нами - уравнение эллипсоида с центром в точке O (-2,2,-3) и полуосями a=17/4, b=17/6, c=17/3. Ответ: эллипсоид с центром в точке O (-2,2,-3) и полуосями a=17/4, b=17/6, c=17/3.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «1. Составить каноническое уравнение прямой проходящей через точки M1 (2,-4,-7) M2 (7,2,7) 2. Записать уравнение прямой х+9/5=у-1/4=z+2/1 в ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Привести уравнение кривой второго порядка f (х; у) = 0 к каноническому виду и найти точки пересечения ее с прямой Ах+Ву+С = 0. Построить график кривой и прямой. 2x^+4x+y^-2=0, 2x+y+2=0
Ответы (1)
Задача 4.3. Даны координаты точек A, B, C и D. Найти: 1. уравнение грани BCD, 2. уравнение плоскости, проходящей через точку A параллельно плоскости BCD, 3. канонические уравнения прямой, проходящей через точку A перпендикулярно плоскости BCD, 4.
Ответы (1)
Привести уравнение кривых второго порядка к каноническому виду. Найти координаты фокусов, сделать чертеж. a) x^2-4y^2=16; b) x^2+y^2-x-y-0.5=0; v) 2x^2-3y^2=12; g) y+x^2+4=0;
Ответы (1)
Признаки делимости на 5 и на 2. Привести пример. Признаки делимости на 10 и на 2. Привести пример. Признаки делимости на 9 и на 3. Привести пример. Какие числа называют простыми? Привести пример. Какие числа называют составными? Привести пример.
Ответы (1)
1) Привести к функции острого угла ctg 1200, а затем вычислить. 2) Привести к функции острого угла tg 300, а затем вычислить. 3) Привести к функции острого угла tg 1200, а затем вычислить.
Ответы (1)