Задать вопрос
25 июля, 22:55

записаны натуральные числа от 1 до 1001. Стерли все числа, делящиеся на 6. Сколько чисел осталось на доске?

+4
Ответы (2)
  1. 26 июля, 01:10
    0
    Найдем количество всех натуральных чисел, которые делятся на 6 из множества от 1 до 1001.

    n - натуральное.

    1≤n≤1001, домножим последнее неравенство на (1/6).

    (1/6) ≤ n/6 ≤ 1001/6;

    n/6 = k - натуральное,

    1/6≤k≤1001/6 = 166 + (5/6),

    т. к. k - натуральное, то последнее неравенство равносильно

    1≤k≤166;

    Таким образом среди натуральных чисел от 1 до 1001 всего 166 чисел, которые делятся на 6.

    Теперь найдем количество натуральных чисел из множества от 1 до 1001, которые не делятся на 6.

    1001 - 166 = 835.

    Ответ. 835.
  2. 26 июля, 01:56
    0
    Тупо каждую шестую цифру уберай и всё

    такие как 6 12 18 24 и тд.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «записаны натуральные числа от 1 до 1001. Стерли все числа, делящиеся на 6. Сколько чисел осталось на доске? ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы