Задать вопрос
20 мая, 13:37

Каждая грань куба разделена на 9 квадратов. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?

Варианты:

16 18 20 22 30

+2
Ответы (1)
  1. 20 мая, 15:30
    0
    22.

    2 грани ромбом 4+4

    2 грани как 2 диагонали 5+5

    и на дне и верхе по 2 = 4

    Итого 22
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Каждая грань куба разделена на 9 квадратов. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Каждая грань куба разделена на 9 квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба разделена на девять квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?
Ответы (2)
Каждая грань куба разделена на 9 квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие 2 покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба 2 х2 разделена на 4 квадратика. Какое наибольшее число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба разделена на четыре квадратика Какое самое большое количество квадратиков можно покрасить что бы никакие два покрашенных не имели общей стороны? А 4 Б 6 в 8 Г 9 д 12
Ответы (1)