Задать вопрос
14 января, 07:14

Каждая грань куба разделена на девять квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?

+1
Ответы (2)
  1. 14 января, 09:21
    0
    Видимо 8.

    По 2 на 2-х гранях и по 1 на 4-х гранях.
  2. 14 января, 09:47
    0
    Ответ будет 30. надо 5 граней умножить на 6 сторон
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Каждая грань куба разделена на девять квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Каждая грань куба разделена на 9 квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба разделена на 9 квадратиков. Какое самое большое число квадратиков можно покрасить, чтобы никакие 2 покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба 2 х2 разделена на 4 квадратика. Какое наибольшее число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны?
Ответы (1)
Каждая грань куба разделена на 9 квадратов. Какое самое большое число квадратиков можно покрасить, чтобы никакие два покрашенных квадратика не имели общей стороны? Варианты: 16 18 20 22 30
Ответы (1)
Каждая грань куба разделена на четыре квадратика. какое самое большое количество квадратика можно покрасить чтобы никакие два квадратика не имели общей стороны
Ответы (1)