Задать вопрос
7 февраля, 08:59

Внутри треугольника ABC отмечена точка М. Через нее проведена прямая, параллельная АС и пересекающая стороны АВ и ВС соответсвенно в точках D и Е, причём MD=AD и МЕ=ЕС. Докажите, что точка М - точка пересечения биссектрис треугольника.

+1
Ответы (1)
  1. 7 февраля, 10:29
    0
    Раз AD=DM, угол MAD равен углу AMD. Углы AMD и MAC равны как внутренние накрест лежащие при пересечении параллельных прямых. Следовательно, равны углы MAD и MAC, откуда следует, что AM - биссектриса угла A треугольника ABC. Аналогично доказывается, что CM - биссектриса угла C.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Внутри треугольника ABC отмечена точка М. Через нее проведена прямая, параллельная АС и пересекающая стороны АВ и ВС соответсвенно в точках ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы