Задать вопрос
13 марта, 21:54

Какое какое наибольшее количество чисел от 1700 до 2300 крайние числа включительно можно выбрать так что сумма никаких двух из них не делится на 5

+3
Ответы (1)
  1. 14 марта, 01:26
    0
    - Чисел, делящихся на 5, может быть не более одного, иначе сумма двух чисел, делящихся на 5, будет делиться на 5.

    - Если выбрано хоть одно число, дающее остаток 1 при делении на 5, то не должны быть выбраны числа, дающие остаток 4 при делении на 5, и наоборот.

    - Если выбрано хоть одно число, дающее остаток 2 при делении на 5, то не должны быть выбраны числа, дающие остаток 3 при делении на 5, и наоборот.

    Чисел, дающих остаток 0 при делении на 5: 2300/5 - 1700/5 + 1 = 460 - 340 + 1 = 121, и их на 1 больше, чем с каждым ненулевым остатком.

    Итак, можно взять не более одного числа, делящегося на 5, не более половины из 240 с остатками 1 или 4, не более половины из 240 с остатками 2 или 3. Тогда можно выбрать не больше, чем 1 + 120 + 120 = 241 число.

    Оценка достигается, например, если выбрать все числа с остатками 1 и 3 и число 2000.

    Ответ. 241
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Какое какое наибольшее количество чисел от 1700 до 2300 крайние числа включительно можно выбрать так что сумма никаких двух из них не ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы