Задать вопрос
22 июля, 15:25

В стране 15 городов, и каждый из них связан дорогами по крайней мере с 7 другими. Докажите, что из любого города можно проехать в любой другой по дорогам. Между двумя городами есть только одна дорога.

+3
Ответы (1)
  1. 22 июля, 19:08
    0
    15 * 7=105 Всё ответ это не могла делать сама?
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В стране 15 городов, и каждый из них связан дорогами по крайней мере с 7 другими. Докажите, что из любого города можно проехать в любой ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Каждый из 15 городов соединен дорогами не менее чем с 7 другими а) Докажите что из любого города можно попасть по этим дорогам в любой другой Б) А если каждый город соединен не менее чем с другими?
Ответы (1)
В некоторой стране 275 городов, из которых 25 - областные центры. Некоторые города соединены между собой дорогами (но не более чем одной для каждой пары городов), причем любой путь по дорогам между двумя обычными городами, если он есть, проходит
Ответы (1)
В некоторой стране 225 городов, из которых 15 - областные центры. Некоторые города соединены между собой дорогами (но не более чем одной для каждой пары городов), причем любой путь по дорогам между двумя обычными городами, если он есть, проходит
Ответы (1)
В некоторой стране 300 городов, из которых 30 - областные центры. Некоторые города соединены между собой дорогами (но не более чем одной для каждой пары городов), причем любой путь по дорогам между двумя обычными городами, если он есть, проходит
Ответы (1)
В некоторой стране 200 городов, из которых 10 - областные центры. Некоторые города соединены между собой дорогами (но не более чем одной для каждой пары городов), причем любой путь по дорогам между двумя обычными городами, если он есть, проходит
Ответы (1)