Задать вопрос
26 апреля, 04:25

Помогите решить тригонометрические уравнения

а) sin2x*cosx+sinx*cos2x=1/2

б) 1-cos2x=sin2x

+4
Ответы (1)
  1. 26 апреля, 05:12
    0
    cos^2x - 1/2sin2x + cosx = sinx

    sin2x = 2sinx*cosx

    cos^2x - 1/2*2sinx*cosx+cosx = sinx

    cos^2x - 1/2*2sinx*cosx+cosx - sinx = 0

    cos^2x-sinx*cosx+cosx-sinx=0

    cosx (cosx+1) - sinx (cosx+1) = 0

    (cosx+1) * (cosx-sinx) = 0

    cosx+1=0 - > cosx = - 1 - > x=pi+2pi*K

    cosx-sinx=0 Делим уравнение на корень из 2

    sin (pi/4-x) = 0

    pi/4-x=pi*n

    x=pi/4-pi*n
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите решить тригонометрические уравнения а) sin2x*cosx+sinx*cos2x=1/2 б) 1-cos2x=sin2x ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы